Microwave properties of the generalized Fibonacci quasi-periodic multilayered photonic band gap structure
نویسندگان
چکیده
The transmission properties in microwave domains (10 GHz to 40 GHz) of generalized dielectric Fibonacci multilayer generated by the rule : with a pair of positive integers m and n were studied. The initial generations of generalized Fibonacci sequence are taken as follows: S0 = L and S1 = H, where H and L are two elementary layers with refractive indices nL = 1 (air) and nH = 3 (ceramic). The so-called “trace map method” was used to simulate the transmission spectra of the multilayer structures at normal incidence. Based on the representation of the transmittance spectra in the microwave range an analysis depending on the pair (n, m) is presented. It has been shown that the reflection bands of the proposed quasi-periodic structure could cover the whole spectral range. By comparison, it is impossible to reach this result by using the periodical multilayer structure.
منابع مشابه
Properties of Omnidirectional Photonic Band Gaps in Fibonacci Quasi-periodic One- Dimensional Superconductor Photonic Crys- Tals
In this paper, the properties of the omnidirectional photonic band gap (OBG) realized by one-dimensional (1D) Fibonacci quasi-periodic structure which is composed of superconductor and isotropic dielectric have been theoretically investigated by the transfer matrix method (TMM). From the numerical results, it has been shown that this OBG is insensitive to the incident angle and the polarization...
متن کاملDesign and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals
In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...
متن کاملUnfolding the band structure of non-crystalline photonic band gap materials
Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used ...
متن کاملساختار نواری و تابش گرمایی بلور فوتونیکی دو بعدی سیلیکونی
In this research, we have studied the photonic band structure, optical properties and thermal emission spectrum of 2D Silicon photonic crystal with hexagonal structure. The band structure, band gap map and the gap size versus radius have been calculated by plane wave expansion method. The maximum band gap size of TE (TM) polarization and the complete gap size are 51% (20%) and 17% at air hole r...
متن کاملPhase Properties of One-Dimensional Quaternary Photonic Crystals
In this paper, properties of reflection phase in one-dimensional quaternary photonic crystals combining dispersive meta-materials and positive index materials are investigated by transfer matrix method. Two omnidirectional band gaps are located in the band structure of considered structure. However, we limit our studies to the frequency range of the second wide band gap. We observe that the val...
متن کامل